3D Surface Reconstruction Based on Dynamic Graph Convolutional Occupancy Network

Author:

Jiang Yaoyu1ORCID,Song Lijuan12ORCID

Affiliation:

1. School of Information Engineering, Ningxia University, Yinchuan 750021, P. R. China

2. Collaborative Innovation Center for Ningxia, Big Data and Artificial Intelligence, Co-founded by Ningxia Municipality and Ministry of Ningxia University, Yinchuan 750021, P. R. China

Abstract

A 3D reconstruction method based on dynamic graph convolutional occupancy networks is proposed to address the issues of texture information loss, geometric information loss after voxelization, and lack of object completeness constraints in the process of 3D reconstruction using voxel representation in a block-wise manner. By constructing a dynamic graph structure for feature extraction, the method aims at restore 3D models with fewer holes and local details. In the feature extraction stage, local pooling is employed within each point cloud block to address the problem of nonsignificant texture feature loss. To tackle the issues of geometric constraint loss and insufficient scene semantic information caused by block-wise processing, a feature fusion method between adjacent blocks is proposed to learn richer scene semantic information and long-range dependencies between points. By learning features within and between blocks, each point retains as much geometric information as possible, mitigating the problem of geometric information loss due to voxelization. During the surface generation, interpolation is used to infer the occupancy value for each point, and the Marching Cubes algorithm is employed for three-dimensional surface reconstruction. Experimental validation on object-level (ShapeNet dataset) and scene-level (Synthetic Rooms dataset, MatterPort3D dataset for real-world scenes) datasets demonstrates the effectiveness and advancement of the proposed method.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Ningxia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3