Affiliation:
1. Department of Computer Science, Periyar University, Salem-636011, Tamil Nadu, India
2. Department of Computer Science, Thiruvalluvar Government Arts College, Rasipuram-637401, Namakkal, Tamil Nadu, India
Abstract
Predicting three-dimensional structure of a protein in the field of computational molecular biology has received greater attention. Most of the recent research works aimed at exploring search space, however with the increasing nature and size of data, protein structure identification and prediction are still in the preliminary stage. This work is aimed at exploring search space to tackle protein structure prediction with minimum execution time and maximum accuracy by means of quantile regressive dragonfly and structural class homolog-based deep learning (QRD-SCHDL). The proposed QRD-SCHDL method consists of two distinct steps. They are protein structure identification and prediction. In the first step, protein structure identification is performed by means of QRD optimization model to identify protein structure with minimum error. Here the protein structure identification is first performed as the raw database contains sequence information and does not contain structural information. An optimization model is designed to obtain the structural information from the database. However, protein structure gives much more insight than its sequence. Therefore, to perform computational prediction of protein structure from its sequence, actual protein structure prediction is made. The second step involves the actual protein structure prediction via structural class and homolog-based deep learning. For each protein structure prediction, a scoring matrix is obtained by utilizing structural class maximum correlation coefficient. Finally, the proposed method is tested on a set of different unique numbers of protein data and compared to the state-of-the-art methods. The obtained results showed the potentiality of the proposed method in terms of metrics, error rate, protein structure prediction time, protein structure prediction accuracy, precision, specificity, recall, ROC, Kappa coefficient and [Formula: see text]-measure, respectively. It also shows that the proposed QRD-SCHDL method attains comparable results and outperformed in certain cases, thereby signifying the efficiency of the proposed work.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software