Surfactant PVA-Stabilized Co–Mo Nanocatalyst Supported by Graphene Oxide Sheets Toward the Hydrolytic Dehydrogenation of Ammonia Borane

Author:

Zhao Xin1,Ke Dandan1,Han Shumin2,Li Yuan2,Zhang Hongming2,Cai Ying1

Affiliation:

1. College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China

2. Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China

Abstract

By adding surfactant polyvinyl alcohol (PVA) and controlling the preparation process, we successfully synthesized Co–Mo catalysts. For further improving the dispersion, reduced graphene oxide sheets as catalyst carrier were introduced to synthesize Co–Mo@rGO composite catalyst as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. The introduction of Mo for preparing Co–Mo@rGO catalyst helped to form alloy catalyst with better structure, better dispersity and smaller particle size. When the molar ratio of Co and Mo was 0.75:0.25, the bimetallic composite catalyst exhibited superior activity with TOF value of 16.29[Formula: see text]mol[Formula: see text]. The activation energy of the reaction was calculated to be 43.72[Formula: see text]kJ[Formula: see text][Formula: see text]. Furthermore, the reusability tests reveal that waxberry-like Co–Mo still show good catalytic activity with 80.3% of their initial activity in five successive runs. The enhanced catalytic activities were due to the synergistic interaction between graphene sheets and waxberry-like Co–Mo NPs, which was beneficial to improve the dispersion and stability of bimetallic NPs. Also, ligand effects on the formation of waxberry-like structure and amorphous state further promoted the catalytic activity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3