Comb-like geometric constraints leading to emergence of the time-fractional Schrödinger equation

Author:

Petreska Irina1,Sandev Trifce123,Lenzi Ervin Kaminski4

Affiliation:

1. Faculty of Natural Sciences and Mathematics, Institute of Physics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia

2. Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Boulevard Krste Misirkov 2, 1000 Skopje, Macedonia

3. Institute of Physics and Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany

4. Departamento de Fisica, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil

Abstract

This paper presents an overview over several examples, where the comb-like geometric constraints lead to emergence of the time-fractional Schrödinger equation. Motion of a quantum object on a comb structure is modeled by a suitable modification of the kinetic energy operator, obtained by insertion of the Dirac delta function in the Laplacian. First, we consider motion of a free particle on two- and three-dimensional comb structures, and then we extend the study to the interacting cases. A general form of a nonlocal term, which describes the interactions of the particle with the medium, is included in the Hamiltonian, and later on, the cases of constant and Dirac delta potentials are analyzed. At the end, we discuss the case of non-integer dimensions, considering separately the case of fractal dimension between one and two, and the case of fractal dimension between two and three. All these examples show that even though we are starting with the standard time-dependent Schrödinger equation on a comb, the time-fractional equation for the Green’s functions appears, due to these specific geometric constraints.

Funder

Alexander von Humboldt Foundation

CNPq

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3