Generation of various classes of entangled states in a two-mode Bose–Einstein condensate under the influence of interatom collisions

Author:

Ghasemian E.1,Tavassoly M. K.1

Affiliation:

1. Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran

Abstract

In this paper, we generate some new classes of entangled states of a bimodal Bose–Einstein condensate (BEC), a pair of tunnel-coupled BEC, in the presence of two- and three-body elastic as well as mode-exchange collisions. The Hamiltonian of the considered system is very complicated, moreover, it can be fortunately transformed into a simple form using a two-mode displacement operator. After introducing the general form of the time evolved state, various classes of entangled states are generated. Indeed, the influence of different orders of tunneling strengths on the generated entangled states has been studied. Depending on the tunneling strength constants, two-, three- and four-partite entangled states are generated, all of which are superposition states of macroscopic number of BEC atoms. Considering three-particle collision dramatically changes the generated entangled states. Moreover, in particular cases, the resulted states are non-entangled. Also, we show that tunneling and collisional interactions can be manipulated to generate a pair of atomic entangled coherent states (quasi-Bell states). In addition, it is observed that the degree of entanglement for two-partite entangled states can be tuned via the number of BEC atoms, i.e. the corresponding concurrences tend to their maximum value by increasing the atoms in both modes of system.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3