Quark degrees of freedom and nuclear matter saturation

Author:

Baldo Marcello1,Aghbolaghi Zahra Asadi12,Vidaña Isaac1,Bigdeli Mohsen2

Affiliation:

1. National Institute for Nuclear Physics, Sezione di Catania, via S. Sofia 64, I-95123, Catania, Italy

2. Department of Physics, University of Zanjan, 45371-38791 Zanjan, Iran

Abstract

It has been found in previous works [M. Baldo and K. Fukukawa, Phys. Rev. Lett. 113, 241501 (2014); K. Fukukawa, M. Baldo, G. F. Burgio, L. Lo Monaco and H.-J. Schulze, Phys. Rev. 92, 065802 (2015)] that the nucleon–nucleon potential of [Y. Fujiwara, M. Kohno, C. Nakamoto and Y. Suzuki Phys. Rev. C 64, 054001 (2001); Y. Fujiwara et al., Phys. Rev. C 65, 014002 (2001)] gives an accurate saturation point in symmetric nuclear matter once the three hole-line contributions are included in the Brueckner–Bethe–Goldstone expansion without the addition of three-body forces in the nuclear Hamiltonian. The potential is based on a quark model of nucleons and on the quark–quark interaction together with quark exchange processes. These features introduce an intrinsic nonlocality of the nucleon–nucleon interaction. In order to clarify the role of the quark degrees of freedom and of the nonlocality in the saturation, we perform a comparative study of this potential and the traditional meson exchange models, exemplified in the CD-Bonn potential. We find that at the Brueckner–Hartree–Fock approximation, which corresponds to the two hole-line level of approximation, the dominant modification of the nucleon–nucleon interaction with respect to CD-Bonn is incorporated in the s-wave channels, where the quark degrees of freedom should be more relevant, in particular for the short range quark exchange processes. However, when the three hole-line contribution is included, we find that the higher partial waves play a relevant role, mainly in the term that describes the effect of the medium on the off-shell propagation of the nucleon.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3