Discrete phase space and continuous time relativistic quantum mechanics II: Peano circles, hyper-tori phase cells, and fiber bundles

Author:

Das Anadijiban1,Chatterjee Rupak2ORCID

Affiliation:

1. Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

2. Center for Quantum Science and Engineering, Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Abstract

The discrete phase space and continuous time representation of relativistic quantum mechanics are further investigated here as a continuation of paper I.1 The main mathematical construct used here will be that of an area filling Peano curve. We show that the limit of a sequence of a class of Peano curves is a Peano circle denoted as [Formula: see text], a circle of radius [Formula: see text] where [Formula: see text]. We interpret this two-dimensional (2D) Peano circle in our framework as a phase cell inside our 2D discrete phase plane. We postulate that a first quantized Planck oscillator, being very light, and small beyond current experimental detection, occupies this phase cell [Formula: see text]. The time evolution of this Peano circle sweeps out a 2D vertical cylinder analogous to the worldsheet of string theory. Extending this to 3D space, we introduce a [Formula: see text]-dimensional phase space hyper-tori [Formula: see text] as the appropriate phase cell in the physical dimensional discrete phase space. A geometric interpretation of this structure in state space is given in terms of product fiber bundles. We also study free scalar Bosons in the background [Formula: see text]-dimensional discrete phase space and continuous time state space using the relativistic partial difference-differential Klein–Gordon equation. The second quantized field quanta of this system can cohabit with the tiny Planck oscillators inside the [Formula: see text] phase cells for eternity. Finally, a generalized free second quantized Klein–Gordon equation in a higher [Formula: see text]-dimensional discrete state space is explored. The resulting discrete phase space dimension is compared to the significant spatial dimensions of some of the popular models of string theory.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3