On the entanglement of co-ordinate and momentum degrees of freedom in noncommutative space

Author:

Nandi Shilpa1ORCID,Rahaman Muklesur1ORCID,Patra Pinaki2ORCID

Affiliation:

1. Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, West Bengal 700131, India

2. Department of Physics, Brahmananda Keshab Chandra College, Kolkata 700108, India

Abstract

In this paper, we investigate the quantum entanglement induced by phase-space noncommutativity. Both the position–position and momentum–momentum noncommutativity are incorporated to study the entanglement properties of coordinate and momentum degrees of freedom under the shade of oscillators in noncommutative space. Exact solutions for the systems are obtained after the model is re-expressed in terms of canonical variables, by performing a particular Bopp’s shift to the noncommuting degrees of freedom. It is shown that the bipartite Gaussian state for an isotropic oscillator is always separable. To extend our study for the time-dependent system, we allow arbitrary time dependency on parameters. The time-dependent isotropic oscillator is solved with the Lewis–Riesenfeld invariant method. It turns out that even for arbitrary time-dependent scenarios, the separability property does not alter. We extend our study to the anisotropic oscillator, which provides an entangled state even for time-independent parameters. The Wigner quasi-probability distribution is constructed for a bipartite Gaussian state. The noise matrix (covariance matrix) is explicitly studied with the help of Wigner distribution. Simon’s separability criterion (generalized Peres–Horodecki criterion) has been employed to find the unique function of the (mass and frequency) parameters, for which the bipartite states are separable. In particular, we show that the mere inclusion of non-commutativity of phase-space is not sufficient to generate the entanglement, rather anisotropy is important at the same footing. We explore the experimental viability of our result through the computation of extractable work for the current situation.

Funder

SERB, DST

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3