QCD chiral condensate and pseudoscalar-meson properties in the nuclear medium at finite temperature

Author:

Hutauruk Parada T. P.1,Nam Seung-il123ORCID

Affiliation:

1. Department of Physics, Pukyong National University (PKNU), Busan 48513, Korea

2. Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul 02841, Korea

3. Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea

Abstract

The pion and kaon properties in a nuclear medium at nonvanishing temperature as well as the quantum chromodynamics (QCD) chiral condensate in the presence of a magnetic field for various baryon densities are studied in the Nambu–Jona–Lasinio (NJL) model with the help of the proper-time regularization (PTR) scheme, simulating a QCD confinement. The density dependence of the quark mass in symmetric nuclear matter is obtained from the quark-meson coupling (QMC) model, which shares the same covariant feature with the NJL model, at quark level. We then analyze the QCD chiral condensates and dynamical masses for various baryon densities at finite temperature and magnetic field as well as the pion and kaon masses, pion and kaon weak-decay constants, pion- and kaon-quark coupling constants, and wave function renormalization factors for various baryon densities at finite temperature. We find that the QCD chiral condensates suppress with increasing temperature and baryon density and enhance under the presence of a magnetic field, which are consistent with other model predictions. Interestingly, the wave function renormalization factors for the pion and kaon increase with respect to temperature and reduce as the baryon density increases are found.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nucleon axial coupling constant in a magnetar environment;Nuclear and Particle Physics Proceedings;2023-12

2. Nucleon axial-vector coupling constant in magnetar environments;Physical Review D;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3