Sodium versus potassium effects on the glutamic acid side-chains interaction on a heptapeptide

Author:

Asciutto Eliana K.1,Gaborek Timothy1,Madura Jeffry D.1

Affiliation:

1. Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA

Abstract

Equilibrium peptide conformations in solution, especially in the presence of salts, has been of interest for several decades. The fundamental interactions that determine the dominant peptide conformations in solution have been experimentally and computationally probed; however, a unified understanding has not yet emerged. In a previous study, we performed metadynamics simulations on the heptapeptide AEAAAEA in Sodium Chloride ( NaCl ) and Potassium Chloride ( KCl ) solutions at concentrations ranging from 0.5–2.0 M. Using a three-dimensional collective variable coordinate system, we computed the free energy landscapes in each saline environment as well as in pure water. We found that the presence of Na + and K + ions induces some changes in the stability of the conformers that define the state space, but does not alter the overall energetics between conformers and does not favor helical conformations. We investigate here, how the presence of salts ( NaCl and KCl ) affects the glutamic–glutamic interaction and its consequences on the stability of each equilibrium conformation. We perform this study through fixed backbone simulations for the most populated conformations identified in our previous work: the α-helix, 310-helix, π-helix, the extended polyproline II (PPII) and 2.51-helix conformations. It was found that for each conformation, there exists stable substates determined by the glutamic acid side-chains distance and orientation, and that Na + and K + cations (de)stabilize preferentially each conformation. It was also found that intramolecular single water mediated hydrogen bonds play a crucial role in the observed (de) stabilization of each equilibrium conformation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Journal of Theoretical and Computational Chemistry;2014-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3