ROVIBRATIONAL BOUND STATES OF THE Ar2Ne COMPLEX

Author:

YANG BENHUI1,POIRIER BILL1

Affiliation:

1. Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409, USA

Abstract

We report exact quantum dynamics calculations of the eigenstate energy levels for the bound rovibrational states of the Ar2Ne complex, across the range of J values for which such states are observed (J = 0–35). All calculations have been carried out using the ScalIT suite of parallel codes. These codes employ a combination of highly efficient methods, including phase-space optimized discrete variable representation, optimal separable basis, and preconditioned inexact spectral transform (PIST) methods, together with an effective massive parallelization scheme. The Ar2Ne energy levels were computed using a pair-wise Aziz potential plus a three-body correction, in Jacobi co-ordinates. Effective potentials for the radial co-ordinates are constructed, which reveal important physical insight into the two distinct dissociation pathways, Ar2Ne → NeAr + Ar and Ar2Ne → Ar2 + Ne . A calculation of the bound vibrational (J = 0) levels, computed using the Tang–Toennies potential, is also performed for comparison with results from the previous literature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3