THE ANALYSIS OF BINDING PATTERNS ON DIFFERENT RECEPTORS BOUND TO HEMAGGLUTININ OF AVIAN AND AVIAN-LIKE INFLUENZA VIRUS USING QUANTUM CHEMICAL CALCULATIONS

Author:

SANGMA C.1,NUNRIUM P.1,HANNONGBUA S.1

Affiliation:

1. Cheminformatics Research Unit, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

Abstract

While there has been no pandemic outbreak of influenza evolving from the H5N1 strain yet, the virus has already killed people. This suggests that without any significant mutations the influenza virus can live within the human body for days in which its life cycles can continue. The first step for infection is the host cell surface binding which is the function of the glycoprotein hemagglutinin (HA). In this investigation, quantum chemical calculations were performed on the systems comprising four structures coming from parts of the HA, with its cell receptor-analog substrate, determined from X-ray structures of the 1934 Spanish flu and avian influenza antigens. The calculations are aimed at partitioning the system into several parts, thus obtaining global and partial contributions of binding energy from each of them. As a result, it was possible to propose quantitatively the main contributions of key amino residues of the avian influenza virus glycoprotein around the binding pocket relevant to the binding process.The main binding energy contributions of the Spanish flu HA were from Tyr95, Val135, Thr136, Ala137, Glu190, Asp225, and Gln226, while the main contributions of the avian flu HA were from Ser129, Val131, Ser132, and Ser133. It was also found that the effect from the HA with an avian characteristic, Gln226 and Gly228, was not relatively high according to the contributed binding energy, whereas the effect from nearby water molecules was significant. Thus, it was concluded that both human and avian virus HA could recognize human cell receptors better than the avian cell receptors according to the binding energy. Therefore, the preference to any particular cell receptor types might involve some other factors rather than being determined solely by the HA binding process.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3