Regression with Stable Errors Based on Order Statistics

Author:

Noughabi Reza Alizadeh1,Mohammadpour Adel1ORCID

Affiliation:

1. Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Classical regression approaches are not robust when errors are heavy-tailed or asymmetric. That may be due to the non-existence of the mean or variance of the error distribution. Estimation based on trimmed data, which ignored outlier or leverage points, has an old history and frequently used. This procedure chooses fixed cut-off points. In this work, we use this idea recently applied for initial estimates of regression coefficients with heavy-tailed stable errors. We propose an effective procedure to calculate the cut-off points based on the tail index and skewness parameters of errors. We use the property of the existence of some moments of stable distribution order statistics. Data are trimmed based on ordered residuals of a least square regression. However, the trimmed data’s optimal number is determined based on the number of error order statistics whose variance exists. Then, we use the rest of the ordered data to estimate the regression coefficients. Based on these order statistics’ joint distribution, we analytically compute the bias and variance of the introduced estimator of regression parameters that was impossible for regression with stable errors.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Type of LASSO Regression Model with Cauchy Noise;Journal of Agricultural, Biological and Environmental Statistics;2023-11-28

2. Least Trimmed Squares for Regression Models with Stable Errors;Fluctuation and Noise Letters;2023-07-14

3. Multivariate Regression with Stable Errors Using Order Statistics;Fluctuation and Noise Letters;2022-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3