A Hybrid PSO-GA Algorithm for Traveling Salesman Problems in Different Environments

Author:

Khan Indadul1ORCID,Pal Sova2,Maiti Manas Kumar3

Affiliation:

1. Department of Computer Science, Chandrakona Vidyasagar Mahavidyalaya, Paschim-Medinipur, West Bengal 721201, India

2. Department of Computer Science, Y.S. Palpara Mahavidyalaya, Palpara, Purba-Medinipur, West Bengal 721458, India

3. Department of Mathematics, Mahishadal Raj College, Mahishadal, Purba-Medinipur, West Bengal 721628, India

Abstract

In this study particle swarm optimization (PSO) is modified and hybridised with genetic algorithm (GA) using one’s output as the other's input to solve Traveling Salesman Problem(TSP). Here multiple velocity update rules are introduced to modify the PSO and at the time of the movement of a solution, one rule is selected depending on its performances using roulette wheel selection process. Each velocity update rule and the corresponding solution update rule are defined using swap sequence (SS) and swap operation (SO). K-Opt operation is applied in a regular interval of iterations for the movement of any stagnant solution. GA is applied on the final output swarm of the PSO to search the optimal path of the large size TSPs. Roulette wheel selection process, multi-point cyclic crossover and the K-opt operation for the mutation are used in the GA phase. The algorithm is tested in crisp environment using different size benchmark test problems available in the TSPLIB. In the crisp environment the algorithm gives approximately 100% success rate for the test problems up to considerably large sizes. Efficiency of the algorithm is tested with some other existing algorithms in the literature using Friedman test. Some approaches are incorporated with this algorithm for finding solutions of the TSPs in imprecise (fuzzy/rough) environment. Imprecise problems are generated from the crisp problems randomly, solved and obtained results are discussed. It is observed that the performance of the proposed algorithm is better compared to the some other algorithms in the existing literature with respect to the accuracy and the consistency for the symmetric TSPs as well as the Asymmetric TSPs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3