Fuzzy-Based Multi-Agent System for Distributed Energy Management in Smart Grids

Author:

Radhakrishnan Bharat Menon1,Srinivasan Dipti1,Mehta Rahul1

Affiliation:

1. National University of Singapore, 21, Lower Kent Ridge Road, Singapore 119077, Singapore

Abstract

Energy Management Systems have become an imperative aspect of smart grids, owing to the enormous challenges imposed due to real-time pricing, distributed generation and integration of intermittent renewables. Due to the uncertainty associated with renewable sources and prominent fluctuations in the load demand, it is extremely important to maintain the overall energy balance in such grids. In this paper, the distributed energy management is achieved using a Multi-agent System which provides a flexible and reliable solution to control and manage smart grids. Adaptive fuzzy systems are designed to instill intelligent decision making capability in the agents of multi-agent system. When renewable sources are inadequate, the sustainability of the system is not guaranteed and multi-agent system is capable of deciding the mode of operation such that the system reliability and performance is not compromised. The proposed algorithm maintains power balance in the system and also sustains desired values for the State of Charge of storage units in order to guarantee extended battery life. The Energy management system also implements a cost optimization algorithm based on the Particle Swarm Optimization technique, to minimize operating costs and maximize profits earned by the grid. The proposed energy management algorithm is tested and validated on a practical test system which inherits most of the features of a small-scale smart grid.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3