Distinguishing Vagueness from Ambiguity in Rough Set Approximations

Author:

Greco Salvatore12,Matarazzo Benedetto13,Słowiński Roman45ORCID

Affiliation:

1. Department of Economics and Business, University of Catania, 95129 Catania, Italy

2. Portsmouth Business School, Centre of Operations Research and Logistics (CORL), University of Portsmouth, Portsmouth PO1 3DE, United Kingdom

3. Department of Law, LUMSA University, Palermo, Italy

4. Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland

5. Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract

In this paper we present a new approach to rough set approximations that permits to distinguish between two kinds of “imperfect” knowledge in a joint framework: on one hand, vagueness, due to imprecise knowledge and uncertainty typical of fuzzy sets, and on the other hand, ambiguity, due to granularity of knowledge originating from the coarseness typical of rough sets. The basic idea of our approach is that each concept is represented by an orthopair, that is, a pair of disjoint sets in the universe of knowledge. The first set in the pair contains all the objects that are considered as surely belonging to the concept, while the second set contains all the objects that surely do not belong to the concept. In this context, following some previous research conducted by us on the algebra of rough sets, we propose to define as rough approximation of the orthopair representing the considered concept another orthopair composed of lower approximations of the two sets in the first orthopair. We shall apply this idea to the classical rough set approach based on indiscernibility, as well as to the dominance-based rough set approach. We discuss also a variable precision rough approximation, and a fuzzy rough approximation of the orthopairs. Some didactic examples illustrate the proposed methodology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3