On the Commitment Value and Commitment Optimal Strategies in Bimatrix Games

Author:

Leonardos Stefanos1,Melolidakis Costis1

Affiliation:

1. Department of Mathematics, National & Kapodistrian University of Athens, Panepistimioupolis GR — 157 84, Athens, Greece

Abstract

Given a bimatrix game, the associated leadership or commitment games are defined as the games at which one player, the leader, commits to a (possibly mixed) strategy and the other player, the follower, chooses his strategy after being informed of the irrevocable commitment of the leader (but not of its realization in case it is mixed). Based on a result by Von Stengel and Zamir [2010], the notions of commitment value and commitment optimal strategies for each player are discussed as a possible solution concept. It is shown that in nondegenerate bimatrix games (a) pure commitment optimal strategies together with the follower’s best response constitute Nash equilibria, and (b) strategies that participate in a completely mixed Nash equilibrium are strictly worse than commitment optimal strategies, provided they are not matrix game optimal. For various classes of bimatrix games that generalize zero-sum games, the relationship between the maximin value of the leader’s payoff matrix, the Nash equilibrium payoff and the commitment optimal value are discussed. For the Traveler’s Dilemma, the commitment optimal strategy and commitment value for the leader are evaluated and seem more acceptable as a solution than the unique Nash equilibrium. Finally, the relationship between commitment optimal strategies and Nash equilibria in [Formula: see text] bimatrix games is thoroughly examined and in addition, necessary and sufficient conditions for the follower to be worse off at the equilibrium of the leadership game than at any Nash equilibrium of the simultaneous move game are provided.

Publisher

World Scientific Pub Co Pte Lt

Subject

Statistics, Probability and Uncertainty,Business and International Management,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2×2 Zero-Sum Games with Commitments and Noisy Observations;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3