U-CYCLES IN n-PERSON TU-GAMES WITH ONLY 1, n - 1 AND n-PERSON PERMISSIBLE COALITIONS

Author:

CESCO JUAN CARLOS1,CALÍ ANA LUCÍA2

Affiliation:

1. Instituto de Matemática Aplicada San Luis (UNSL-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina

2. Departamento de Matemática (U.N. San Luis), Chacabuco y Pedernera, 5700 San Luis, Argentina

Abstract

It has been recently proved that the non-existence of certain type of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n - 1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n - 1 and n-person permissible coalitions (Maschler (1963)).

Publisher

World Scientific Pub Co Pte Lt

Subject

Statistics, Probability and Uncertainty,Business and International Management,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A general characterization for non-balanced games in terms of U-cycles;European Journal of Operational Research;2008-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3