Adaptation of a Deep Liquid-Containing Tank into an Effective Structural Vibration Control Device by a Submerged Cylindrical Pendulum Appendage

Author:

Konar Tanmoy1,Ghosh Aparna Dey1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India

Abstract

Due to a high proportion of impulsive liquid mass and low inherent damping, liquid-containing deep tanks, such as conventional overhead water tanks, are generally not considered for design as tuned liquid dampers (TLDs) for passive vibration control of structures under lateral excitation. This paper presents a novel concept to convert deep tanks into effective vibration control systems through the incorporation of a submerged cylindrical pendulum appendage (CPA). The CPA is placed in the impulsive liquid zone of the tank and its oscillating frequency is tuned to the dominant frequency of the primary structure. When laterally excited, the primary structure transfers vibrational energy to the CPA, thereby setting it into oscillation. The motion of the CPA is opposed by the drag exerted by the surrounding liquid on it, which leads to dissipation of the vibrational energy. This particular design utilizes impulsive liquid mass in the energy dissipation mechanism, while allowing fluctuation in the liquid level in the upper region of the tank, thereby fulfilling the functional requirements of the tank. In this paper, the mathematical model and working principle of the deep tank with CPA (DT-CPA) damper are developed. The equations of motion of a two degree-of-freedom (2-DOF) structure-damper system are derived. The design of the DT-CPA damper is illustrated considering an example structure and the performance of the damper is examined by subjecting the structure-damper system to pre-recorded seismic base excitations. The sensitivity of the performance of the proposed damper to tuning ratio is further studied. Results indicate that the DT-CPA damper is effective in controlling structural vibrations and its performance is comparable to that of a conventional tuned mass damper (TMD) and even slightly superior to that of a conventional TLD system of the shallow tank configuration. The proposed concept thus holds potential for the utilization of deep tanks as energy dissipation devices with minimal interference to their usual functionality.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3