Vector Form Intrinsic Finite Element Method for Analysis of Train–Bridge Interaction Problems Considering The Coach-Coupler Effect

Author:

Duan Y. F.1,Wang S. M.1,Yau J. D.12

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 31000, P. R. China

2. Department of Architecure, Tamkang University, New Taipei City 25137, Taiwan

Abstract

In this paper, the vector form intrinsic finite element (VFIFE) method is presented for analysis the train–bridge systems considering the coach-coupler effect. The bridge is discretized into a group of mass particles linked by massless beam elements and the multi-body coach with suspension systems is simulated as a set of mass particles connected by parallel spring-dashpot units. Then the equation of motion of each mass particle is solved individually and the internal forces induced by pure deformations in the massless beam elements are calculated by a fictitious reverse motion method, in which the structural stiffness matrices need not be updated or factorized. Though the vector-form equations resulting from the VFIFE method cannot be used to compute the structural frequencies by the eigenvalue approach, this study proposes a numerical free vibration test to identify the bridge frequencies for evaluating the bridge damping. Numerical verifications demonstrate that the present VFIFE method performs as accurately as previous numerical ones. The results show that the couplers play an energy-dissipating role in reducing the car bodies’ response due to the bridge-induced resonance, but not in their response due to the train-induced resonance because of the bridge’s intense vibration. Meanwhile, a dual-resonance phenomenon in the train–bridge system occurs when the coach-coupler effect is considered in the vehicle model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3