Probabilistic Damage Detection of Long-Span Bridges Using Measured Modal Frequencies and Temperature

Author:

Deng Yang1,Li Aiqun1,Feng Dongming2

Affiliation:

1. Beijing Advanced Innovation Center for Future Urban Design, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China

2. Weidlinger Transportation Practice, Thornton Tomasetti, New York, NY 10005, USA

Abstract

This paper aims to develop a new probabilistic monitoring-based framework for damage detection of long-span bridges, by eliminating the temperature effects from the measured modal frequencies, probabilistic modeling of modal frequencies using kernel density estimate, and detection damage using the control chart. A methodology is presented to address the issue of modal frequencies' non-normal distribution, which has been neglected in the past studies using the control chart to detect the modal frequencies' abnormality caused by structural damages. The efficiency of the proposed framework is validated through a case study of long-term monitoring data of a long-span suspension bridge. The results show that after elimination of the temperature effects, the selected modal frequencies are not normally distributed, while the Q statistics transferred from the modal frequencies follow the standard normal distribution. The abnormality of modal frequencies can be detected when the data points of the Q statistics exceed the limits of the control chart. Further, the control chart has sufficient sensitivity and thus can be used to detect minor abnormalities of the prototype bridge's modal frequencies. It is concluded that the proposed probabilistic monitoring-based framework offers an effective technique for structural health monitoring of long-span bridges.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3