Progressive Collapse of Power Transmission Tower-Line System Under Extremely Strong Earthquake Excitations

Author:

Tian Li1,Ma Rui-sheng1,Li Hong-nan2,Wang Yang3

Affiliation:

1. School of Civil and Hydraulic Engineering, Shandong University, Jinan, P. R. China

2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, P. R. China

3. College of Engineering, University of Iowa, Iowa, USA

Abstract

The simulation of progressive collapse of a power transmission tower-line system subjected to extremely strong earthquakes is studied in this paper. A three-dimensional finite element model is established for the coupled system that combines three towers and four span lines based on a practical project. The birth to death technique is adopted to simulate the progressive collapse of the system by using the user subroutine VUMAT in ABAQUS. The simulation of progressive collapse of the transmission tower-line system under either single-component or multi-component earthquake excitations is conducted. The collapse path, fracture position and collapse resistant capacity of the transmission tower are investigated. The result shows that the effect of multi-component seismic excitations should be taken into account in simulation of progressive collapse of the transmission tower, since the behavior of towers under multi-component excitations is different from that of single-component excitations. In addition, incremental dynamic analysis (IDA) is carried out to verify the results obtained herein. The present result should prove useful to the seismic design of power transmission towers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3