Affiliation:
1. Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
Abstract
Fix an integer d ≥ 1. In 2008, David and Weston showed that, on average, an elliptic curve over Q picks up a nontrivial p-torsion point defined over a finite extension K of the p-adics of degree at most d for only finitely many primes p. This paper proves an analogous averaging result for principally polarized abelian surfaces A over Q with real multiplication by [Formula: see text] and a level-[Formula: see text] structure. Furthermore, we indicate how the result on abelian surfaces with real multiplication relates to the deformation theory of modular Galois representations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory