MONOGENEITY IN CYCLOTOMIC FIELDS

Author:

ROBERTSON LEANNE1

Affiliation:

1. Mathematics Department, Seattle University, Seattle WA 98122, USA

Abstract

A number field is said to be monogenic if its ring of integers is a simple ring extension ℤ[α] of ℤ. It is a classical and usually difficult problem to determine whether a given number field is monogenic and, if it is, to find all numbers α that generate a power integral basis {1, α, α2, …, αk} for the ring. The nth cyclotomic field ℚ(ζn) is known to be monogenic for all n, and recently Ranieri proved that if n is coprime to 6, then up to integer translation all the integral generators for ℚ(ζn) lie on the unit circle or the line Re (z) = 1/2 in the complex plane. We prove that this geometric restriction extends to the cases n = 3k and n = 4k, where k is coprime to 6. We use this result to find all power integral bases for ℚ(ζn) for n = 15, 20, 21, 28. This leads us to a conjectural solution to the problem of finding all integral generators for cyclotomic fields.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Higher Degree Fields;Diophantine Equations and Power Integral Bases;2019

2. The Story of Algebraic Numbers in the First Half of the 20th Century;Springer Monographs in Mathematics;2018

3. On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields;Number Theory – Diophantine Problems, Uniform Distribution and Applications;2017

4. Discriminant Equations in Diophantine Number Theory;NEW MATH MONOGR;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3