Affiliation:
1. Mathematics Department, Seattle University, Seattle WA 98122, USA
Abstract
A number field is said to be monogenic if its ring of integers is a simple ring extension ℤ[α] of ℤ. It is a classical and usually difficult problem to determine whether a given number field is monogenic and, if it is, to find all numbers α that generate a power integral basis {1, α, α2, …, αk} for the ring. The nth cyclotomic field ℚ(ζn) is known to be monogenic for all n, and recently Ranieri proved that if n is coprime to 6, then up to integer translation all the integral generators for ℚ(ζn) lie on the unit circle or the line Re (z) = 1/2 in the complex plane. We prove that this geometric restriction extends to the cases n = 3k and n = 4k, where k is coprime to 6. We use this result to find all power integral bases for ℚ(ζn) for n = 15, 20, 21, 28. This leads us to a conjectural solution to the problem of finding all integral generators for cyclotomic fields.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献