Radial behavior of Mahler functions

Author:

Poulet Marina1,Rivoal Tanguy2

Affiliation:

1. Institut Fourier, Université Grenoble Alpes, CS 40700, 38058 Grenoble Cedex 9, France

2. Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058 Grenoble Cedex 9, France

Abstract

Many papers have been recently devoted to the study of the radial behavior as [Formula: see text] of transcendental [Formula: see text]-Mahler functions holomorphic in the open unit disk. In particular, Bell and Coons showed in 2017 that, in a generic sense, [Formula: see text]-Mahler functions behave like [Formula: see text] for some [Formula: see text] and [Formula: see text] is a real analytic function of [Formula: see text] such that [Formula: see text]. They did not provide a formula for [Formula: see text] which was made explicit only in a few examples of [Formula: see text]-Mahler functions of orders 1 and 2, and for specific values of [Formula: see text]. In this paper, we first provide an explicit expression of [Formula: see text] as an exponential of a Fourier series in the variable [Formula: see text] for every [Formula: see text]-Mahler function of order 1. Then, extending to a large setting a method introduced by Brent–Coons–Zudilin in 2016 to compute [Formula: see text] associated to the Dilcher–Stolarsky function (a [Formula: see text]-Mahler function of order 2 in [Formula: see text]), we provide an explicit expression of [Formula: see text] for every [Formula: see text]-Mahler function of order 2 under mild assumptions on the coefficients in [Formula: see text] of the underlying [Formula: see text]-Mahler equations. This applies in particular to the generating function of the Baum–Sweet sequence. We do the same for [Formula: see text]-Mahler functions solutions of inhomogeneous Mahler equations of order 1.

Funder

Agence Nationale de la Recherche

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3