Grammatical versus Spelling Error Correction: An Investigation into the Responsiveness of Transformer-Based Language Models Using BART and MarianMT

Author:

Raju Rohit12ORCID,Pati Peeta Basa2ORCID,Gandheesh SA2ORCID,Sannala Gayatri Sanjana2ORCID,Suriya KS2ORCID

Affiliation:

1. Department of Computer Science, University of Colorado, Boulder, CO, USA

2. Department of Computer Science & Engineering, Amrita School of Computing, Bengaluru, Amrita Vishwa Vidyapeetham, India

Abstract

Text continues to remain a relevant form of representation for information. Text documents are created either in digital native platforms or through the conversion of other media files such as images and speech. While the digital native text is invariably obtained through physical or virtual keyboards, technologies such as OCR and speech recognition are utilised to transform the images and speech signals into text content. All these variety of mechanisms of text generation also introduce errors into the captured text. This project aims at analysing different kinds of errors that occur in text documents. The work employs two of the advanced deep neural network-based language models, namely, BART and MarianMT, to rectify the anomalies present in the text. Transfer learning of these models with available dataset is performed to finetune their capacity for error correction. A comparative study is conducted to investigate the effectiveness of these models in handling each of the defined error categories. It is observed that while both models can bring down the erroneous sentences by 20+%, BART can handle spelling errors far better (24.6%) than grammatical errors (8.8%).

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3