Identifying the Most Significant Features for Stress Prediction of Automobile Drivers: A Comprehensive Study

Author:

Al-Nashashibi May Y.1ORCID,El-Khalili Nuha2ORCID,Hadi Wael3ORCID,Al-Banna Abedal-Kareem4ORCID,Issa Ghassan5ORCID

Affiliation:

1. Computer Science Department, University of Petra, Amman, Jordan

2. Software Engineering Department, University of Petra, Amman, Jordan

3. Information Security Department, University of Petra, Amman, Jordan

4. Data Science n Artificial Intelligence Department, University of Petra, Amman, Jordan

5. School of IT, Skyline University, Sharjah, UAE

Abstract

Objective: This paper used three feature selection methods on a Jordanian automobile drivers’ dataset to identify the most significant features for stress prediction algorithm performance. The dataset contains “stress” and “no-stress” classes with 30 features, categorised into physiological and contextual subsets. Methods: Eighteen classifiers from six prediction algorithm categories were evaluated: Rule-based, Tree-based, Ensemble-based, Function-based, Naïve Bayes-based and Lazy-based. Three Feature Subset Selection (FSS) methods were used: Gain Ratio, Chi-square and feature separation. Eight evaluation measures included [Formula: see text]1, Accuracy, Specificity, Sensitivity, Kappa Statistics, Mean Absolute Error (MAE), Area Under Curve (AUC) and Precision Recall Curve Area (PRCA). Results: Among the classifiers, Lazy-based LocalKNN performed significantly well in [Formula: see text]1, Accuracy, Kappa and MAE. Naïve Bayes-based Bayesian Network excelled in other measures. The original dataset with all features yielded the best overall performance, followed by the physiological-only subset. Gain Ratio and Chi-square FSS methods also showed promising results, though not significant. Conclusion: Four physiological (EMG, EMG Amplitude, Heart rate, Respiration Amplitude) and seven contextual (time range of driving, gender, age, driving skills, general accidents, last year’s accidents, stress frequency) features contributed to the best prediction outcomes. The study highlights the importance of proper feature selection and identifies optimal algorithms for specific measures.

Funder

University of petra

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3