A New Semantic Relations-Based Hybrid Approach for Implicit Aspect Identification in Sentiment Analysis

Author:

El Hannach Hajar1,Benkhalifa Mohammed1

Affiliation:

1. ANISSE Research Team, Faculty of Science, Mohammed V University, Rabat, Morocco

Abstract

Within the next few years, sentiment analysis or opinion mining is set to become an important component of real-world applications for product manufacturers, e-commerce companies, and potential customers. Sentiment analysis deals with the computational assessment of people’s opinions apparent or hidden within the text according to three levels: document, sentence and aspect levels. The aspect-level is increasingly becoming an active phase of sentiment analysis. At this level, the aim is to determine the hidden target of opinion represented in datasets, known as aspect term identification. This paper proposes an original hybrid model combining semantic relations and frequency-based approach with supervised classifiers for implicit aspect identification (IAI). The proposed approach is directed towards improving the F1-performances for traditional supervised classifiers commonly used in this field based on eager and lazy learning, and deep learning technique using long short-term memory whit attention mechanism applied for IAI. Particularly, this work addresses aspect term extraction and aggregation, the two sub-tasks of IAI, involving adjectives and verbs. The effects of this approach are empirically examined on multiple datasets of electronic products and restaurant reviews with multiple aspect granularity levels. Comparing this method with similar approaches clearly shows the benefits of this method: (i) the use of an appropriately selected WordNet semantic relations of adjectives and verbs that significantly helps classifiers for IAI. (ii) Using the hybrid model helps classifiers better handle these selected WordNet semantic relations and therefore deal better with IAI.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3