Inertial gradient method for fluorescence molecular tomography

Author:

Wang Lei1ORCID,Huang Hui2

Affiliation:

1. College of Physics and Optoelectronic Engineering, Harbin Engineering University, 145 Nantong Avenue, Harbin, 150001, P. R. China

2. School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China

Abstract

Image reconstruction in fluorescence molecular tomography involves seeking stable and meaningful solutions via the inversion of a highly under-determined and severely ill-posed linear mapping. An attractive scheme consists of minimizing a convex objective function that includes a quadratic error term added to a convex and nonsmooth sparsity-promoting regularizer. Choosing [Formula: see text]-norm as a particular case of a vast class of nonsmooth convex regularizers, our paper proposes a low per-iteration complexity gradient-based first-order optimization algorithm for the [Formula: see text]-regularized least squares inverse problem of image reconstruction. Our algorithm relies on a combination of two ideas applied to the nonsmooth convex objective function: Moreau–Yosida regularization and inertial dynamics-based acceleration. We also incorporate into our algorithm a gradient-based adaptive restart strategy to further enhance the practical performance. Extensive numerical experiments illustrate that in several representative test cases (covering different depths of small fluorescent inclusions, different noise levels and different separation distances between small fluorescent inclusions), our algorithm can significantly outperform three state-of-the-art algorithms in terms of CPU time taken by reconstruction, despite almost the same reconstructed images produced by each of the four algorithms.

Funder

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3