Affiliation:
1. Innovative Research, Engineering & Consulting (irec), Mooslackengasse 17, A-1190, Vienna, Austria
Abstract
This is a one-to-one translation of a German-written Ph.D. thesis from 1999. Quantum designs are sets of orthogonal projection matrices in finite(b)-dimensional Hilbert spaces. A fundamental differentiation is whether all projections have the same rank r, and furthermore the special case r = 1, which contains two important subclasses: Mutually unbiased bases (MUBs) were introduced prior to this thesis and solutions of b + 1 MUBs whenever b is a power of a prime were already given. Unaware of those papers, this concept was generalized here under the notation of regular affine quantum designs. Maximal solutions are given for the general case r ≥ 1, consisting of r(b2 - 1)/(b - r) so-called complete orthogonal classes whenever b is a power of a prime. For b = 6, an infinite family of MUB triples was constructed and it was — as already done in the author's master's thesis (1991) — conjectured that four MUBs do not exist in this dimension. Symmetric informationally complete positive operator-valued measures (SIC POVMs) in this paper are called regular quantum 2-designs with degree 1. The assigned vectors span b2 equiangular lines. These objects had been investigated since the 1960s, but only a few solutions were known in complex vector spaces. In this thesis further maximal analytic and numerical solutions were given (today a lot more solutions are known) and it was (probably for the first time) conjectured that solutions exist in any dimension b (generated by the Weyl–Heisenberg group and with a certain additional symmetry of order 3).
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献