Affiliation:
1. University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
2. Institute of Mathematics, Physics and Mechanics, Jadranska Ulica 19, SI-1000 Ljubljana, Slovenia
Abstract
We initiate the study of expansions of monoids in the class of two-sided restriction monoids and show that generalizations of the Birget–Rhodes prefix group expansion, despite the absence of involution, have rich structure close to that of relatively free inverse monoids. For a monoid [Formula: see text] and a class of partial actions of [Formula: see text], determined by a set, [Formula: see text], of identities, we define [Formula: see text] to be the universal [Formula: see text]-generated two-sided restriction monoid with respect to partial actions of [Formula: see text] determined by [Formula: see text]. This is an [Formula: see text]-restriction monoid which (for a certain [Formula: see text]) generalizes the Birget–Rhodes prefix expansion [Formula: see text] of a group [Formula: see text]. Our main result provides a coordinatization of [Formula: see text] via a partial action product of the idempotent semilattice [Formula: see text] of a similarly defined inverse monoid, partially acted upon by [Formula: see text]. The result by Fountain, Gomes and Gould on the structure of the free two-sided restriction monoid is recovered as a special case of our result. We show that some properties of [Formula: see text] agree well with suitable properties of [Formula: see text], such as being cancellative or embeddable into a group. We observe that if [Formula: see text] is an inverse monoid, then [Formula: see text], the free inverse monoid with respect to strong premorphisms, is isomorphic to the Lawson–Margolis–Steinberg generalized prefix expansion [Formula: see text]. This gives a presentation of [Formula: see text] and leads to a model for [Formula: see text] in terms of the known model for [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献