Affiliation:
1. Vienna University of Technology/Embedded Computing Systems Group, A-1040 Vienna, Treitlstrasse 3, Austria
Abstract
The significant process, voltage and temperature (PVT) variations seen with modern technologies make strictly synchronous design inefficient. Asynchronous design with its flexible timing is a promising alternative, but prototyping is difficult on the available FPGA platforms which are clock centric and do not provide the required functional primitives like mutual exclusion or Muller C-elements. The solutions proposed in the literature so far work nicely in principle but cannot safely handle metastability issues that are inevitable even at some interfaces in asynchronous designs. In this paper, we propose reliable implementations of the fundamental function blocks required to safely convert potential intermediate voltage levels that result from metastability into late transitions that can be reliably handled in the asynchronous domain. These are high- and low-threshold buffers as well as a Schmitt-trigger. We give elaborate background analysis for the proposed circuits and also present the associated routing constraints to make the Schmitt-trigger circuit work properly in spite of the uncertain routing within FPGAs. Furthermore, we propose a procedure for an “in situ reliability assessment” of the specific Schmitt-trigger element under consideration, which also applies to metastability containment with high- or low-threshold buffers only. Our proof of concept is based on experimental results for both Xilinx and Altera FPGA platforms.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献