GOKA: A Network Partition and Cluster Fusion Algorithm for Controller Placement Problem in SDN

Author:

Xiao Changwei1ORCID,Chen Jue1ORCID,Qiu Xihe1,He Dun1,Yin Hanmin1

Affiliation:

1. School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China

Abstract

Software Defined Networking (SDN) is a new promising network architecture, with the property of decoupling the data plane from the control plane and centralizing the network topology logically, making the network more agile than traditional networks. However, with the continuous expansion of network scales, the single-controller SDN architecture is unable to meet the performance requirements of the network. As a result, the logically centralized and physically separated SDN multi-controller architecture comes into being, and thereupon the Controller Placement Problem (CPP) is proposed. In order to minimize the propagation latency in Wide Area Network (WAN), we propose Greedy Optimized K-means Algorithm (GOKA) which combines K-means with greedy algorithm. The main thought is to divide the network into multiple clusters, merge them greedily and iteratively until the given number of controllers is satisfied, and place a controller in each cluster through the K-means algorithm. With the purpose of proving the effectiveness of GOKA, we conduct experiments to compare with Pareto Simulated Annealing (PSA), Adaptive Bacterial Foraging Optimization (ABFO), K-means and K-means[Formula: see text] on 6 real topologies from the Internet Topology Zoo and Internet2 OS3E. The results demonstrate that GOKA has a better and more stable solution than other four heuristic algorithms, and can decrease the propagation latency by up to [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in contrast to PSA, ABFO, K-means and K-means[Formula: see text], respectively. Moreover, the error rate between GOKA and the best solution is always less than [Formula: see text], which promises the precision of our proposed algorithm.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3