Design and Analysis of High-precision Weighted Linear Least-Squares Fitting Algorithm for Fluorescent Optical Fiber Temperature Sensor

Author:

Yang Jian1,Jin Xiangliang1ORCID,Peng Yan2,Luo Jun2

Affiliation:

1. School of Physics and Electronics, Hunan Normal University, Changsha 410081, P. R. China

2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, P. R. China

Abstract

Microwave hyperthermia is a new method of treating cancer, where the therapeutic effect is determined by the heating temperature. Traditional active temperature sensors are interfered by high frequency so that the accuracy of temperature measurement cannot be guaranteed. It is of great significance to study the high-precision fluorescent optical fiber temperature sensor with complete insulation. This paper has realized a compact and practical fluorescent optical fiber temperature sensor after studying the optical path, circuit, data processing algorithm. In order to improve the accuracy of the system, the weighted linear least-squares fitting algorithm is improved in this paper. Through experimental tests, compared with the standard linear least-squares fitting algorithm and the unimproved weighted linear least-squares fitting algorithm, the accuracy of the algorithm is improved by about 98% and 65.5%, respectively. In addition, the response time is reduced by about 36.5%, compared with the unimproved weighted linear least-squares fitting algorithm. This algorithm fully meets the precision requirements of microwave hyperthermia.

Funder

National Natural Science Foundation of China

Hunan Science and Technology Department Huxiang High-level Talent Gathering Project

Innovation Project of Science and Technology Department of Hunan Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3