A Double Bit Approximate Adder Providing a New Design Perspective for Gate-Level Design

Author:

Maroof Naeem1ORCID,Al-Zahrani Ali Y.1

Affiliation:

1. University of Jeddah, Engineering College, Department of Electrical & Electronic Engineering, Jeddah, Saudi Arabia

Abstract

In the modern Block-chain and Artificial Intelligence era, energy efficiency has become one of the most important design concerns. Approximate computing is a new and an evolving field promising to provide energy-accuracy trade-off. Several applications are tolerant to small degradation in results, and hence tasks like image and video processing are candidates to benefit from Approximate Computing. In this paper, we propose a new design approach for designing approximate adders and further optimize the accuracy and cost metrics. Our approach is based on minimizing the errors while cascading more than one 1-bit adder. We insert [Formula: see text] on specific locations to achieve a reasonable circuit minimization and reduce the [Formula: see text] cost. We compare our design with exact adder and relevant state-of-the-art approximate adders. Through analysis and simulations, we show that our approach provides higher accuracy and far better performance compared with other designs. The proposed double bit approximate adder provides more than 25% savings in gate count compared with the exact adder, has a mean absolute error of 0.25 which is lowest among all the reference approximate adders and reduces the power-delay product by more than 60% compared to the exact adder. When employed for image filtering, the proposed design provides a [Formula: see text] of 96%, a [Formula: see text] of 95% and a [Formula: see text] of 91% relative to the actual results, while the second best approximate adder only achieves 64%, 54% and 71% of these image quality metrics, respectively.

Funder

University of Jeddah, Jeddah, Saudi Arabia,

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3