Adaptive Layered Segregated Fit Scheme for Dynamic Memory Allocation

Author:

Guan Yuqian1ORCID,Guo Jian2

Affiliation:

1. Soft/Hardware Co-Design Engineering Research Center, East China Normal University, Shanghai 200062, P. R. China

2. National Trusted Embedded Software, Engineering Technology Research Center, East China Normal University, Shanghai 200062, P. R. China

Abstract

Embedded applications are becoming more complex and are required to utilize computing platform resources more efficiently. Existing dynamic memory allocation (DSA) schemes cannot adaptively perform memory management according to the environment in which they are located or integrate various memory allocation strategies, making it impossible to guarantee a constant execution time. Efficient memory utilization is a crucial challenge for developers, especially in embedded OSs (operating systems). In this paper, we propose an adaptive layered segregated fit (ALSF) scheme for DSA. The ALSF scheme combines dynamic two-dimensional arrays and bitmaps, completes the allocation and freeing of memory blocks within constant execution time, and uses memory splitting technology to reduce internal fragmentation. The proposed scheme also adjusts the number of segregated lists by analyzing the system’s allocation of different memory sizes, which improves the matching accuracy of memory blocks. We conducted a comparative experimental analysis and investigation of the ALSF and two-level segregated fit (TLSF) schemes in the Zephyr OS. Experiments show that the average memory utilization of the proposed ALSF scheme reaches 94.95%. Compared with the TLSF scheme, our scheme has a 12.99% higher allocation success rate in the memory-scarce environment, and the execution speeds of the two are similar.

Funder

National Key Research and Development Program

The Project of Science and Technology Commitment of Shanghai

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3