Design of Current Differencing Transconductance Amplifier using a Novel Approach of Transconductance Boosting for High Frequency Applications

Author:

Rai Shireesh Kumar1ORCID,Pandey Rishikesh1,Garg Bharat1

Affiliation:

1. ECED, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India

Abstract

This paper introduces a novel approach of transconductance boosting for current differencing transconductance amplifier (CDTA). Generally, the variation in the transconductance is achieved by changing the bias current and/or by increasing the aspect ratios of differential pair MOSFETs. These techniques of transconductance variations suffer from several serious drawbacks which include higher power dissipation, limited range of transconductance gain and lower input/output swing. The proposed approach of transconductance boosting overcomes these drawbacks at certain extent and also provides a high value of transconductance gain with acceptable range of bandwidth and power dissipation. It includes two different techniques to make it more effective for transconductance boosting. In the first technique, common source amplifiers have been used between gate and source terminals of the differential pair MOSFETs whereas in the second technique the concept of partial positive feedback is utilized. Using this approach, a new structure of CDTA namely cross-coupled common source current differencing transconductance amplifier I (CCCS-CDTA I) is proposed. To further improve the transconductance gain of CCCS-CDTA I, another structure CCCS-CDTA II is also proposed, in which the differential pair MOSFETs are replaced by two networks of “n” parallel MOSFETs having same aspect ratios. The proposed CCCS-CDTAs are simulated in Mentor Graphics Eldo simulator using TSMC 0.18[Formula: see text][Formula: see text]m process parameters. To confirm the performance of CCCS-CDTA II, physical layout and post-layout simulation results have been presented using Mentor Graphics Calibre tool. The advantages of proposed CCCS-CDTAs have also been discussed by realizing KHN filters and oscillators.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3