Performance Investigation of FinFET-Based MO-CCII and its Applications: Resistor-Less Multi-Function Bi-Quadratic Filter and Balanced Modulator

Author:

Yasir Mohd1ORCID,Ansari Mohammad Samar2

Affiliation:

1. Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, 202002, India

2. Department of Electronics Engineering, Aligarh Muslim University, India

Abstract

This paper presents an optimal design of a high-performance multi-output second-generation current conveyor (MO-CCII) based on 20[Formula: see text]nm Fin-Shaped Field Effect Transistor (FinFETs). Proposed MO-CCII has very low port X impedance and very high port Y impedance. The performance of the CCII has been thoroughly investigated in terms of DC, AC and transient characteristics of terminal voltages and branch currents and frequency response of port impedances. CCII shows the excellent high-frequency response of voltage as well as current transfer gains. The 3[Formula: see text]dB BW of voltage and current transfer gains are 11.2[Formula: see text]GHz and 11[Formula: see text]GHz, respectively. CCII provides excellent performance over its CMOS counterpart. Also, a resistor-less multi-function bi-quadratic filter is proposed. The filter depends on two CCIIs, a capacitor and does not require any resistors. It has three inputs and one output and realizes low-pass, high-pass and band-pass filters from a similar setup. FinFETs in the linear region are utilized as variable resistor to control filter properties. Nevertheless, the proposed filter has two floating capacitors which can be effortlessly realized in these days’ integrated circuit advancements. Also, a balanced modulator is proposed utilizing the proposed FinFET-based CCII and FinFET transistors only. Balanced modulator’s frequency of operation obtained is in GHz range.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3