Ensemble Learning of Lightweight Deep Convolutional Neural Networks for Crop Disease Image Detection

Author:

Al-Gaashani Mehdhar S. A. M.1,Shang Fengjun1,Abd El-Latif Ahmed A.23ORCID

Affiliation:

1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, P. R. China

2. EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Mathematics and Computer Science Department, Faculty of Science, Menoufia University, University, Shebin El-Koom 32511, Egypt

Abstract

The application of convolutional neural networks (CNNs) to plant disease recognition is widely considered to enhance the effectiveness of such networks significantly. However, these models are nonlinear and have a high bias. To address the high bias of the single CNN model, the authors proposed an ensemble method of three lightweight CNNs models (MobileNetv2, NasNetMobile and a simple CNN model from scratch) based on a stacking generalization approach. This method has two-stage training, first, we fine-tuned and trained the base models (level-0) to make predictions, then we passed these predictions to XGBoost (level-1 or meta-learner) for training and making the final prediction. Furthermore, a search grid algorithm was used for the hyperparameter tuning of the XGBoost. The proposed method is compared to the majority voting approach and all base learner models (MobileNetv2, NasNetMobile and simple CNN model from scratch). The proposed ensemble method significantly improved the performance of plant disease classification. Experiments show that the ensemble approach achieves higher prediction accuracy (98% for majority voting and 99% for staking method) than a single CNN learner. Furthermore, the proposed ensemble method has a lightweight size (e.g., 10[Formula: see text] smaller than VGG16), allowing farmers to deploy it on devices with limited resources such as cell phones, internet of things (IoT) devices, unmanned aerial vehicles (UAVs) and so on.

Funder

Natural Science Foundation of Chongqing, China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3