Conformance Testing for Finite State Machines Guided by Deep Neural Network

Author:

Rahaman Habibur1ORCID,Chattopadhyay Santanu1,Sengupta Indranil1

Affiliation:

1. Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India

Abstract

This paper proposes a Finite State Machine (FSM) testing technique based on deep neural network (DNN). This technique verifies the correctness of an implementation FSM-B of a specification FSM-A. Using the back-propagation algorithm, a deep neural network is trained with the input–output patterns for a given set of transition functions that specify an FSM. Initially, for FSM-A, the input patterns and the corresponding output patterns (I/O pairs) are generated. Then most of the patterns are used to train the DNN. Once the training is over, the DNN is validated with the remaining I/O pairs (around 20%). The model can be used for verifying the correctness of FSM-B after training and validation of the DNN. Some inputs are applied to FSM-B and the generated output patterns are compared with the predicted values of the proposed DNN. The difference of accuracy percentages between FSM-A and FSM-B is recorded and zero difference between them indicates the fault-free condition of the implementation FSM-B. To check the effectiveness of the scheme, the output- and state-type faults are injected to derive mutant FSMs. Experimental results performed on the MCNC FSM benchmarks prove the efficacy of the proposed method. Only a few numbers of tests are needed to detect the presence of anomaly, if any. Hence, the test time reduces significantly — resulting in an average test time reduction of 85.67% compared to the conventional techniques. To the best of our knowledge, for the first time a DNN-driven testing scheme is being proposed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3