Simple Yet Secure Encoder Architecture and Ultralightweight Mutual Authentication Protocol for RFID Tags in IoT

Author:

Nagarajan Manikandan1,Rajappa Muthaiah1

Affiliation:

1. SASTRA Deemed to be University, Thanjavur, Tamilnadu, India

Abstract

Internet of things (IoT) has evolved as the internet of everything, and it has grabbed the interest of all the researchers in recent days. Almost all the objects, including nonelectronics devices, can also be connected with the internet through radio frequency identification (RFID) technology. The security of the perception layer is crucial to secure the entire IoT network. RFID-enabled IoT perception layer has secured reader-to-server channel and unsecured tag to reader channel. Hence, securing the unsecured communication channel between the reader and the tag is the need of the hour. This work proposes a simple yet secure permutation approximate adder (SYSPXA)-based RFID mutual authentication protocol to address the need. The proposed protocol dramatically reduces the tag’s storage and computational overhead. It needs 40% less storage and 66.7% less permutation operation in comparison with the existing protocols. Nondisclosure of the key and freshness of key, IDS and random numbers at every mutual authentication process gives resistance to the protocol against de-synchronization attack, disclosure attack, tag tracking, replay attack. The SYSPXA protocol is validated for its security features using Burrows–Abadi–Needham (BAN) logic formal verification. The performance and security of the proposed protocol are contrasted with various futuristic permutation-based protocols, and its superiority over other protocols is highlighted. We have simulated the SYSPXA protocol with ModelSim tool for verifying its functionality. The protocol encoder architecture is implemented in the Intel cyclone IV Field Programmable Gate Array (FPGA) EP4CE115F29C7 device.

Funder

FIST

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3