High-Throughput, Resource-Efficient Multi-Dimensional Parallel Architecture for Space-Borne Sea-Land Segmentation

Author:

Zhang Cunguang1,Jiang Hongxun1,Pan Riwei2,Cao Haiheng1,Zhou Mingliang1ORCID

Affiliation:

1. Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing 100191, P. R. China

2. Department of Computer Science, City University of Hong Kong, Hong Kong

Abstract

Sea-land segmentation based on edge detection is commonly utilized in ship detection, coastline extraction, and satellite system applications due to its high accuracy and rapid speed. Pixel-level distribution statistics do not currently satisfy the requirements for high-resolution, large-scale remote sensing image processing. To address the above problem, in this paper, we propose a high-throughput hardware architecture for sea-land segmentation based on multi-dimensional parallel characteristics. The proposed architecture is well suited to wide remote sensing images. Efficient multi-dimensional block level statistics allow for relatively infrequent pixel-level memory access; a boundary block tracking process replaces the whole-image scanning process, markedly enhancing efficiency. The tracking efficiency is further improved by a convenient two-step scanning strategy that feeds back the path state in a timely manner for a large number of blocks in the same direction appearing in the algorithm. The proposed architecture was deployed on Xilinx Virtex k7-410t to find that its practical processing time for a [Formula: see text] remote sensing image is only about 0.4[Formula: see text]s. The peak performance is 1.625[Formula: see text]gbps, which is higher than other FPGA implementations of segmentation algorithms. The proposed structure is highly competitive in processing wide remote sensing images.

Funder

National Natural Science Foundation of China

Aerospace Science and Technology Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3