FPGA-Based Pipelined Architecture for Real-Time Estimation of Sensitivity Maps Using Pre-Scan Method in Parallel MRI

Author:

Khan Tooba12,Siddiqui Muhammad Faisal1ORCID,Omer Hammad1

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan

2. Department of Computer Engineering, Bahria University, Islamabad 44000, Pakistan

Abstract

Parallel MRI (pMRI) is a widely used technique for increasing the MRI acquisition speed, by using multiple receiver coils with spatially discriminated sensitivities. Sensitivity encoding (SENSE) is a parallel MRI technique used for reconstructing the aliasing free images from the under-sampled MRI data using the spatial information obtained from multiple receiver coils. Precise receiver coil sensitivity estimation is critical for the correct image reconstruction from the under-sampled data in SENSE. Pre-scan method is a quick and conventionally used method for correct estimation of the receiver coil sensitivities, to be used in SENSE. In this work, an application-specific hardware implemented on FPGA (Field Programmable Gate Array) for real-time sensitivity maps estimation using the pre-scan method is proposed. The proposed architecture has the potential to be installed on the receiver coil data acquisition system, which would provide sensitivity maps for image reconstruction, without moving the raw data to the MRI workstation. Parallelism is utilized in the proposed pipelined architecture to make it even faster. From the experimental results, it is shown that the proposed architecture estimates the sensitivity maps in only 1.466[Formula: see text]ms for eight receiver coils. Furthermore, high mean SNR (30[Formula: see text][Formula: see text]dB), low root-mean-square-error ([Formula: see text]) and low artifact power ([Formula: see text]) are achieved for the under-sampled human head, cardiac and phantom data sets (acceleration factor = 2), reconstructed with SENSE algorithm utilizing the sensitivity maps estimated by the proposed architecture.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3