Rapid monitoring the water extraction process of Radix Paeoniae Alba using near infrared spectroscopy

Author:

Hu Tian1,Li Tongtong1,Nie Lei1,Zang Lixuan1,Zang Hengchang1,Zeng Yingzi2

Affiliation:

1. School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, P. R. China

2. Shandong Wohua Pharmaceutical Technology Co., Ltd, Weifang, 261205, P. R. China

Abstract

Near infrared (NIR) spectroscopy has been developed into one of the most important process analytical techniques (PAT) in a wide field of applications. The feasibility of NIR spectroscopy with partial least square regression (PLSR) to monitor the concentration of paeoniflorin, albiflorin, gallic acid, and benzoyl paeoniflorin during the water extraction process of Radix Paeoniae Alba was demonstrated and verified in this work. NIR spectra were collected in transmission mode and pretreated with smoothing and/or derivative, and then quantitative models were built up using PLSR. Interval partial least squares (iPLS) method was used for the selection of spectral variables. Determination coefficients ([Formula: see text] and [Formula: see text]), root mean squares error of prediction (RMSEP), root mean squares error of calibration (RMSEC), and residual predictive deviation (RPD) were applied to verify the performance of the models, and the corresponding values were 0.9873 and 0.9855, 0.0487[Formula: see text]mg/mL, 0.0545[Formula: see text]mg/mL and 8.4 for paeoniflorin; 0.9879, 0.9888, 0.0303[Formula: see text]mg/mL, 0.0321[Formula: see text]mg/mL and 9.1 for albiflorin; 0.9696, 0.9644, 0.0140[Formula: see text]mg/mL, 0.0145[Formula: see text]mg/mL and 5.1 for gallic acid; 0.9794, 0.9781, 0.00169[Formula: see text]mg/mL, 0.00171[Formula: see text]mg/mL and 6.9 for benzoyl paeoniflorin, respectively. The results turned out that this approach was very efficient and environmentally friendly for the quantitative monitoring of the water extraction process of Radix Paeoniae Alba.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3