COAA* — An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments

Author:

Tai Jun Jet1,Phang Swee King2ORCID,Wong Felicia Yen Myan2

Affiliation:

1. Institute for Future Transport and Cities, Coventry University, Priory St, Coventry CV1 5FB, United Kingdom

2. School of Computer Science and Engineering, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia

Abstract

Obstacle avoidance and navigation (OAN) algorithms typically employ offline or online methods. The former is fast but requires knowledge of a global map, while the latter is usually more computationally heavy in explicit solution methods, or is lacking in configurability in the form of artificial intelligence (AI) enabled agents. In order for OAN algorithms to be brought to mass produced robots, more specifically for multirotor unmanned aerial vehicles (UAVs), the computational requirement of these algorithms must be brought low enough such that its computation can be done entirely onboard a companion computer, while being flexible enough to function without a prior map, as is the case of most real life scenarios. In this paper, a highly configurable algorithm, dubbed Closest Obstacle Avoidance and A* (COAA*), that is lightweight enough to run on the companion computer of the UAV is proposed. This algorithm frees up from the conventional drawbacks of offline and online OAN algorithms, while having guaranteed convergence to a global minimum. The algorithms have been successfully implemented on the Heavy Lift Experimental (HLX) UAV of the Autonomous Robots Research Cluster in Taylor’s University, and the simulated results match the real results sufficiently to show that the algorithm has potential for widespread implementation.

Funder

Taylor's University Emerging Research Grant

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3