Affiliation:
1. Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu 50411, Tartu, Estonia
Abstract
Finsler geometry naturally appears in the description of various physical systems. In this review, I divide the emergence of Finsler geometry in physics into three categories: dual description of dispersion relations, most general geometric clock and geometry being compatible with the relevant Ehlers–Pirani–Schild axioms. As Finsler geometry is a straightforward generalization of Riemannian geometry there are many attempts to use it as generalized geometry of spacetime in physics. However, this generalization is subtle due to the existence of non-trivial null directions. I review how a pseudo-Finsler spacetime geometry can be defined such that it provides a precise notion of causal curves, observers and their measurements as well as a gravitational field equation determining the Finslerian spacetime geometry dynamically. The construction of such Finsler spacetimes lays the foundation for comparing their predictions with observations, in astrophysics as well as in laboratory experiments.
Funder
European Regional Development Fund
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献