Simulation of nonlinear vibration responses of cab system subject to suspension damper complete failure for trucks

Author:

Zhao Leilei1,Guo Jian2,Yu Yuewei1,Li Xiaohan1,Zhou Changcheng1

Affiliation:

1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China

2. Binzhou Vocational College, Binzhou, Shandong 256603, P. R. China

Abstract

The strong vibration responses of the cab system can be restrained by the damper force and the friction of the suspensions for trucks. After the failures of dampers, especially in the case of the complete failure, the anti vibration effect of the friction is prominent. However, the nonlinear vibration response characteristics of the cab subject to the damper complete failure have not been revealed. In order to reveal the nonlinear vibration response characteristics, a dynamic model of the cab system was established and its vibration equations were given. The friction forces existing in the suspensions were determined by the bench test. The influences of the friction forces on the cab vibration under different amplitude harmonic inputs were investigated when the dampers completely fail. The cab vertical displacement changes with the excitation amplitude and the vibration represents various motion states, including the periodic motion, the quasi-periodic motion, and the chaotic motion. The simulation results show that when the dampers fail, the proper friction forces help to suppress the quasi-periodic motion and the chaotic motion of the cab and to reduce the amplitude of the periodic motion. The proper friction forces can make the cab movement far away from the chaos area. They also help to avoid the fatigue damage of the cab floor and suspension parts to improve the service life of the suspension parts and to reduce the maintenance cost of the cab suspensions.

Funder

National Natural Science Foundation of China

Scientific Research Starting Foundation for Doctors

School-Enterprise Cooperation Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3