Affiliation:
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, P. R. China
Abstract
Two-dimensional (2D) and axisymmetric minimum length nozzles (MLN) with constant and variable specific heat were strictly designed using the method of characteristics. Requirements for the exit Mach number and flow field uniformity were proposed for the nozzles design. In solutions to kernel zone flow field reported previously, violent vibrations of upper wall discrete points at the inlet were observed. Meanwhile, slight compressions could be observed in the flow field of axisymmetric nozzles designed by those methods. In this study, we proposed a novel technique in which the inlet grid is intensified to overcome the limitations mentioned above. Additionally, methods based on conservation of mass and eliminating wave theory were proposed to determine the contour of the nozzle’s upper wall. Inviscid numerical simulations by CFD revealed that the proposed nozzle could meet the requirements for exit Mach number and flow field uniformity in various situations, and axisymmetric nozzles designed from eliminating wave theory exhibited better flow field compared with those designed from conservation of mass.
Funder
Zhejiang Provincial Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献