Regularized sparse decomposition model for speech enhancement via convex distortion measure

Author:

Saleem Nasir1ORCID,Khattak Muhammad Irfan2

Affiliation:

1. Department of Electrical Engineering, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan

2. Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Kohat Campus, KPK, Pakistan

Abstract

An important stage in speech enhancement is to estimate noise signal which is a difficult task in non-stationary and low signal-to-noise conditions. This paper presents an iterative speech enhancement approach which requires no prior knowledge of noise and is based on low-rank sparse matrix decomposition using Gammatone filterbank and convex distortion measure. To estimate noise and speech, the noisy speech is decomposed into low-rank noise and sparse-speech parts by enforcing sparsity regularization. The exact distribution of noise signals and noise estimator is not required in this approach. The experimental results demonstrate that our approach outperforms competing methods and yields better overall speech quality and intelligibility. Moreover, composite objective measure reinforced a better performance in terms of residual noise and speech distortion in adverse noisy conditions. The time-varying spectral analysis validates significant reduction of the background noise.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control System and Speech Recognition of Exhibition Hall Digital Media Based on Computer Technology;Mobile Information Systems;2022-08-30

2. Deep Neural Networks for Speech Enhancement in Complex-Noisy Environments;International Journal of Interactive Multimedia and Artificial Intelligence;2020

3. Spectral Phase Estimation Based on Deep Neural Networks for Single Channel Speech Enhancement;Journal of Communications Technology and Electronics;2019-12

4. Speech enhancement based on noise classification and deep neural network;Modern Physics Letters B;2019-06-18

5. An efficient speaker recognition using quantum neural network;Modern Physics Letters B;2018-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3