Affiliation:
1. State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
Under investigation in this paper is a (3[Formula: see text]+[Formula: see text]1)-dimensional generalized Kadomtsev–Petviashvili equation, which describes the long water waves and small-amplitude surface waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid. Via the Hirota method and symbolic computation, the lump wave, breather wave and rogue wave solutions are obtained. We graphically present the lump waves under the influence of the dispersion effect, nonlinearity effect, disturbed wave velocity effects and perturbed effects: Decreasing value of the dispersion effect can lead to the range of the lump wave decreases, but has no effect on the amplitude. When the value of the nonlinearity effect or disturbed wave velocity effects increases respectively, lump wave’s amplitude decreases but lump wave’s location keeps unchanged. Amplitudes of the lump waves are independent of the perturbed effects. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity. When the value of the dispersion effect decreases, range of the rogue wave increases. When the value of the nonlinearity effect or disturbed wave velocity effects decreases respectively, rogue wave’s amplitude decreases. Value changes of the perturbed effects cannot influence the rogue wave.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献